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The issue of the parameterization of small-scale (‘subgrid’) turbulence is addressed in
the context of passive scalar transport. We focus on the Kraichnan advection model
which lends itself to the analytical investigation of the closure problem. We derive
systematically the dynamical equations which rule the evolution of the coarse-grained
scalar field. At the lowest-order approximation in l/r , l being the characteristic scale
of the filter defining the coarse-grained scalar field and r the inertial-range separation,
we recover the classical eddy-diffusivity parameterization of small scales. At the next-
leading order a dynamical closure is obtained. This outperforms the classical model
and is therefore a natural candidate for subgrid modelling of scalar transport in
generic turbulent flows.

1. Introduction
One of the most striking characteristics of hydrodynamic turbulence is the presence

of a wide range of active length and time scales. These scales are strongly and
nonlinearly coupled, a fact that makes analytical approaches, at best, impractical.
The situation does not look better for direct numerical simulations of turbulent
systems: to fully resolve a turbulent flow requires approximately (L/η)3/4 grid points
in each spatial direction (see, for example, Frisch 1995), L and η being the integral
scale and the dissipation scale respectively. In the atmosphere, for instance, the ratio
L/η may become of the order of 1010 (η ∼ 10−3 m and L ∼ 107 m) thus requiring
the dynamical description of 1022 degrees of freedom. This remains, up to now and
probably also in the near feature, a prohibitive task.

To overcome the problem, ‘coarse-grained’ versions of the original hydrodynamic
equations are often considered in order to describe large-scale features of the original
full system. The large-eddy simulation (LES) technique is probably the most popular
example (Meneveau & Katz 2000). The success of such a strategy is however strongly
dependent on the realism of the description of small scales in terms of the large,
explicitly resolved, scales. The problem of representing small unresolved scales in the
absence of scale separation – the long-known closure problem – attracts a great deal of
attention in many domains ranging from geophysics to engineering (McComb 1992),
and is one among the many challenges of turbulence theory.

Our goal here is to shed some light on this aspect within the context of scalar
turbulence where considerable progress has been achieved in the last few years
(Shraiman & Siggia 2000; Falkovich, Gawȩdzki & Vergassola 2001). For this purpose
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we will consider a particular model of scalar transport (Kraichnan 1968, 1994) where
the LES strategy can be formulated and the problem of relating unresolved scales to
resolved ones can be successfully attacked analytically.

In this respect, the Kraichnan model has some characteristics of paramount
importance:

(i) Exact expressions for relevant statistical observables can be derived from first
principles, that is from equation (2.1): this amounts to saying that the observables
for the ‘fully resolved case’ are known. An example is the expression (3.3) for the
second-order scalar structure function, an observable tightly related to the Fourier
spectrum of the scalar field.

(ii) Closures for the large-scale dynamics can be derived in a systematical
way (see § 3), and their predictions can be analytically checked against the exact
solution.
Those features make the Kraichnan model an ideal candidate for studying LES
closures.

2. LES closures for passive scalar turbulence
Scalar transport is governed by the advection–diffusion equation

∂tθ + v · ∇ θ = κ0�θ + f, (2.1)

describing the evolution of a passive scalar field θ(x, t) – e.g. temperature when
buoyancy effects are negligible – advected by an incompressible velocity field v(x, t).
Scalar fluctuations are injected into the system at the large scale L by the forcing
term f . Dissipation occurs at small scales η due to the molecular diffusivity κ0.

The coarse-grained scalar and velocity fields, denoted by θ̃ and ṽ are obtained by
convolving the original, fully resolved, fields with a filter Gl with characteristic scale
l (η � l � L):

θ̃(x, t) =

∫
Gl(x − x′)θ(x ′, t) dx ′, (2.2)

ṽ(x, t) =

∫
Gl(x − x ′)v(x ′, t) dx ′. (2.3)

The equation for θ̃ derived from (2.1) is

∂t θ̃ + ṽ · ∇ θ̃ = κ0�θ̃ + f̃ − (L + S̃), (2.4)

where L is analogous to the Leonard stress

L ≡ ˜ṽ · ∇ θ̃ − ṽ · ∇ θ̃ , (2.5)

and S is defined as

S ≡ v′ · ∇ θ̃ + v′ · ∇ θ ′ + ṽ · ∇ θ ′. (2.6)

The small-scale fields θ ′ and v′ are defined as θ ′ ≡ θ − θ̃ and v′ ≡ v − ṽ.
The purpose of LES closures is to express L and S̃ in terms of the large-scale

fields θ̃ and ṽ. Once this goal is accomplished, (2.4) can be numerically integrated on
a mesh of spacing l, rather than η as would be required for the integration of the full
system (2.1), with an enormous gain in memory and CPU time requirements.

Unfortunately, no general closed expression for L and S̃ in terms of θ̃ and ṽ is
available. A remarkable exception is the case where there is a marked scale separation
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between velocity and scalar length and time scales. It is then possible to show
(see, e.g., Biferale et al. 1995; Mazzino 1997) that the effect of unresolved scales is just
the renormalization of the molecular diffusion coefficient κ0 to an enhanced eddy-
diffusivity κ eff (generally speaking, an eddy-diffusivity tensor κ eff

ij ). General expressions
for the eddy diffusivity as a function of the flow properties do not exist, and in most
cases κ eff can be determined only numerically.

Here, our aim is to consider the challenging situation where there is no scale
separation between velocity and scalar and explore, in such a context, the existence
of effective equations for θ̃ .

Our procedure to derive the closed coarse-grained dynamical equations is the
following:

(i) starting from first principles, that is from (2.1), we take advantage of the
distinctive aspects of the Kraichnan model to derive an exact, yet unclosed, statistical
equation for the correlation function of the filtered scalar field 〈θ̃(x, t)θ̃(x + r, t)〉;

(ii) the statistical averages appearing in this equation, which involve small-scale
fields, are then expressed in terms of correlations of large-scale fields only, at a given
order of approximation in l/r;

(iii) from the statistically closed equations we consistently infer the dynamical
closed equations for θ̃ .
No supplementary assumptions are made in performing this procedure. Although
the method relies heavily on distinctive characteristics of the Kraichnan model, we
believe that the results are relevant to generic passive scalar turbulence as well. Our
claim is supported by numerical and analytical evidence gathered in the past few
years showing that most of the phenomenology of scalar turbulence is captured by
the Kraichnan model. For an exhaustive review on this aspect see, e.g., Falkovich
et al. (2001).

To illustrate the power of our approach we anticipate here the main results of this
paper, postponing their derivation to the following sections.

Carrying out the procedure at the lowest significant order in l/r yields the following
effective equation for the coarse-grained field:

∂t θ̃ + ṽ · ∇ θ̃ = κ eff�θ̃ + f̃ , κ eff ≡ κ0 + κ1, (2.7)

where κ1 is a constant depending on the flow properties that can be explicitly
calculated within the Kraichnan model. Equation (2.7) is just the long-known constant
eddy-diffusivity closure.

At the next-leading order we find

∂t θ̃ + ṽ · ∇θ̃ = κT
αβ∇α∇β θ̃ + f̃ , (2.8)

with κT
αβ(x, t) = δαβκ

eff − al2 eαβ , and eαβ = 1
2
(∇αṽβ + ∇β ṽα). The filter-dependent factor

a can be determined analytically within the Kraichnan model. Equation (2.8) is the
passive scalar analogue (see, e.g., Kang & Meneveau 2001) of the so-called ‘mixed-
model’ (nonlinear closure plus scalar eddy viscosity) used in Navier–Stokes turbulence
(see, e.g., Borue & Orszag 1998). Such a mixed model was also invoked by Kang &
Meneveau (2001) to reproduce the correct amount of anisotropy in heated turbulent
jets.

The nonlinear closure can also be derived starting from a Taylor expansion in
the spirit of Leonard (1974) performed on a modified Leonard term (see, e.g.,
Horiuti 1997). A purely dissipative effective-viscosity model is usually added because
the sole nonlinear model does not suffice, its dissipation being far too low. Here,
the constant eddy diffusivity plus the nonlinear model follow from first principles
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Figure 1. The coarse-grained structure functions obtained from the constant eddy-diffusivity
closure, and the dynamical eddy-diffusivity model, normalized with respect to the exact filtered
structure function (3.4).

without additional requirements. The turbulent eddy-diffusivity κT depends on the
coarse-grained velocity field: for this reason we will dub this model dynamical eddy-
diffusivity closure.

In order to compare the performances of the various models we will explicitly
compute the structure function S

(θ̃ )
2 (r) = 〈[θ̃ (x + r, t) − θ̃(x, t)]2〉 of the coarse-grained

scalar field according to (2.7) or to (2.8) and compare them with the exact value
obtained from the solution of (2.1) upon filtering. The result is shown in figure 1: the
dynamical eddy-diffusivity closure gives a structure function that is already almost
indistinguishable from the exact result at scales r ≈ 2 l whereas the constant eddy
diffusivity is not very effective in the range r � 10 l.

3. A systematic approach to LES closure
3.1. The Kraichnan model

In order to carry out our analysis, we need to specialize (2.1) to a class of random
velocity fields. To be more specific, the velocity field is assumed here to be Gaussian,
of zero mean, statistically stationary, homogeneous and isotropic, δ-correlated in time
and with inertial-range power-law behaviour. Its statistics is fully determined by the
correlation function

〈[vα(x1, t) − vα(x2, t)][vβ(x1, 0) − vβ(x2, 0)]〉 = 2D
(v)
αβ (x1 − x2)δ(t), (3.1)

where D
(v)
αβ (r) ≡ D0 rξ [(d + ξ − 1)δαβ − ξrαrβ/r2], r ≡ |r| = |x2 − x1| and d is the space

dimension. The assumption of δ-correlation in time is of course far from the reality, but
it has the remarkable feature of leading to closed equations for equal-time correlation
functions C(θ )

n ≡ 〈θ(x1, t) . . . θ(xn, t)〉 of any order n (see, e.g., Falkovich et al. 2001).
The parameter ξ governs the roughness of the velocity field, whose Hölder exponent is
ξ/2. Due to the white-in-time character of the flow, the Kolmogorov value is ξ = 4/3.
A convenient choice for the forcing term is to take f random, Gaussian, statistically
homogeneous and isotropic, white in time, of zero mean and with correlation function

〈f (x1, t) f (x2, 0)〉 = F (r/L) δ(t) (3.2)

with F (r/L) decreasing rapidly for r 
 L. Since l � L we have f̃ � f .
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In this framework the expression for the second-order correlation function C
(θ )
2 can

be derived analytically (Falkovich et al. 2001). In the inertial range η � r � L the
exact second-order structure function of the scalar field S

(θ )
2 (r) ≡ 〈[θ(x1, t)−θ(x2, t)]

2〉
is

S
(θ )
2 (r) =

2F (0)

ζ2(d − 1)dD0

rζ2, ζ2 = 2 − ξ, (3.3)

where F (0), defined in (3.2), is the average injection rate of scalar variance. The
exponent ζ2 coincides with the predictions based on dimensional arguments, and is
ζ2 = 2/3 for ξ = 4/3, according to the Kolmogorov–Obukhov–Corrsin scaling.

From now on, we will confine ourselves to space dimension d = 3 and specialize Gl

to a top-hat filter, that is Gl(r) = 3/(4πl3) if r < l and 0 otherwise.
To provide a benchmark for the various closures, we first evaluate the exact value of

the coarse-grained structure function S
(θ̃ )
2 ≡ 〈[θ̃ (x1, t)−θ̃(x2, t)]

2〉. A double integration
of (3.3) yields

[
S

(θ̃)
2 (r)

]
exact

= S
(θ )
2 (r)

[
1 +

(2 − ξ )(3 − ξ )

5

(
l

r

)2

+ O

(
l

r

)4
]

. (3.4)

Clearly, as the separation r increases and becomes much greater than the filter scale
l the unfiltered result is recovered. Equation (3.4) represents, therefore, the best result
that can be achieved by means of a closure.

3.2. Exact statistical equations for unfiltered and filtered fields

As a first step, we derive the exact equations for the two-point correlation function of
the filtered and of the unfiltered field. It is more convenient to start the analysis from
(2.1) by substituting v = ṽ+v′ and θ = θ̃+θ ′ in the advective term v · ∇ θ . Equation (2.1)
takes then the form

∂tθ(x2, t) + ṽ(x2, t) · ∇ θ̃(x2, t) = κ0�θ(x2, t) + f (x2, t) − S(x2, t), (3.5)

from which we can immediately derive the equation for C
(θ )
2 (r, t) = 〈θ (x1, t)θ(x2, t)〉:

∂tC
(θ )
2 (r, t) + 2〈θ (x1, t)ṽ · ∇θ̃(x2, t)〉 − 2κ0�C

(θ )
2 (r, t) = F (r) − 2〈θ (x1)S(x2)〉. (3.6)

A double convolution of the above equation with the filter Gl yields the exact equation
for the correlation of the filtered field:

∂tC
(θ̃ )
2 (r, t) + 2〈θ̃ (x1, t)

˜ṽ · ∇θ̃(x2, t)〉 − 2κ0�C
(θ̃ )
2 (r, t) = F (r) − 2〈θ̃ (x1)S̃(x2)〉. (3.7)

This is the starting point for our systematic procedure to construct closure
approximations. It contains two terms, the second one on the left-hand side and
the last one on the right-hand side, which are not expressed as functions of large-
scale fields only. In the following, we will find approximate closed expressions for the
unclosed terms perturbatively in l/r .

3.3. Constant eddy-diffusivity closure

In order to calculate the second term on the left-hand side of (3.7), let us start from
〈θ (x1)S(x2)〉. Its expression can be easily obtained by exploiting, e.g., the Furutsu–
Novikov functional Gaussian integration (see, e.g., Frisch 1995), which holds for
Gaussian velocities and forcings. It is

〈θ (x1)S(x2)〉 =
F (0)2ξ+2(3 − ξ )

(4 + ξ )(6 + ξ )

(
l

r

)ξ

− F (0)

30
ξ 2

(
l

r

)2

+ O

(
l

r

)2+ξ

. (3.8)
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Our first claim is that, at order (l/r)2, with an error of order (l/r)2+ξ we have

〈θ (x1)S(x2)〉 = 〈θ̃ (x1)S̃(x2)〉 = 〈θ̃(x1)S(x2)〉, (3.9)

〈θ̃ (x1, t)
˜ṽ · ∇θ̃(x2, t)〉 = 〈θ̃ (x1, t)ṽ · ∇θ̃ (x2, t)〉. (3.10)

The derivation of (3.9) and (3.10) is postponed to the Appendix. Before proceeding
further, some comments on (3.10) are in order. It tells us that the Leonard-type term
does not contribute, at O((l/r)2), to the equation for the second-order coarse-grained
scalar correlation function. Since our closures are derived from this equation, it follows
that the Leonard-type term will not contribute to small-scale parameterizations. This
fact is not a consequence of the Kraichnan advection model but rather seems to hold
for general advection models. Indeed, a standard expansion in the spirit of Leonard
(1974) (see also, e.g., Horiuti 1997) performed on 〈θ̃ (x1)L(x2)〉 with L given by (2.5)
yields at the lowest order in the filter width the expression

〈θ̃ (x1)L(x2)〉 ∼ l2�〈θ̃ (x1, t)ṽ · ∇θ̃ (x2, t)〉. (3.11)

This expression is trivially zero, since 〈θ̃ (x1, t)ṽ · ∇θ̃(x2, t)〉 is the flux of scalar variance,
which is independent of r = |x2 − x1| provided that r falls in the inertial range of
scales.

For standard closure models based on single-point quantities, the contribution from
the Leonard stress in the parameterizations is, generally speaking, non-zero.

Let us now focus on consequences of relations (3.9) and (3.10) for (3.7) evaluated
at order (l/r)ξ . At this order, from (3.8) and (3.9) we have

−2〈θ̃ (x1)S̃(x2)〉 = 2κ1�C
(θ̃ )
2 (r, t). (3.12)

The above expression follows by comparing (3.8) at order (l/r)ξ with the
contribution coming from the diffusive term, 2κ0�C

(θ̃ )
2 (r, t) = −F (0)κ0(3 − ξ )/(3D0r

ξ ).
We immediately realize that the term of order (l/r)ξ in (3.8) corresponds to an
effective diffusive term with an eddy diffusivity κ1 ≡ lξ [2ξ24D0]/[(ξ + 4)(ξ + 6)]. This
gives rise to an effective dissipative scale comparable to l:

ηeff ≡
[
(2l)ξ

(
24

(ξ + 4)(ξ + 6)

)
+ η

ξ
0

]1/ξ

, (3.13)

where η0 ≡ (κ0/D0)
1/ξ is the molecular dissipation scale.

At order (l/r)ξ , (3.7) is thus closed in the large-scale fields and, moreover, due to
(3.10) it has the same structure as the equation for C

(θ )
2 but with an effective diffusivity,

κ0 + κ1. Equation (2.4) thus takes the form

∂t θ̃ + ṽ · ∇ θ̃ = κ eff�θ̃ + f̃ , κ eff ≡ κ0 + κ1. (3.14)

Starting from (2.7) one can deduce the equation for the correlation function C
(θ̃)
2

exploiting the Furutsu–Novikov functional Gaussian integration. In doing that, the
next step will consist in comparing the resulting expression for S

(θ̃)
2 with (3.4). After

some simple but quite lengthy algebra, the calculation leads to

S
(θ̃ )
2 = S

(θ )
2

[
1 +

(2 − ξ )(3 + ξ )

5

(
l

r

)2

+ O

(
l

r

)4
]

. (3.15)

By comparison with (3.4), the above expression permits the error to be quantified,
which occurs at order (l/r)2, on the second-order structure function due to the
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closure (3.14). The degree of accuracy of the constant eddy-diffusivity description
can be perceived by looking at figure 1, obtained for ξ =4/3, corresponding to the
Kolmogorov scaling law for the advecting velocity field.

3.4. Dynamical eddy-diffusivity closure

Our aim is now to improve the eddy-diffusivity closure, exact at order (l/r)ξ , by
introducing a new closure which is accurate up to order (l/r)2. It is not difficult,
although quite lengthy, to verify that the large-scale equation has the form (2.8):

∂t θ̃ + ṽ · ∇θ̃ = κT
αβ∇α∇β θ̃ + f̃ , κT

αβ(x, t) = δαβκ
eff − al2 eαβ, (3.16)

with eαβ = 1
2
(∇αṽβ +∇β ṽα). The filter-dependent factor a =

∫
d3rGl(r)r

2/(3l2). For the
top-hat filter one immediately obtains a = 1/5.

The equation for 〈θ̃2〉, deduced from (3.16), at the statistically stationary state, is
(remember that f̃ = f )

F (0) = 2κ eff〈(∇θ̃ )2〉 − al2〈eαβ∇αθ̃∇β θ̃〉, (3.17)

which states the energy balance between production (controlled by F (0)) and
dissipation. The fact that the first term on the right-hand side of (3.17) gives a
dissipative contribution is evident. This is actually the case also for the second term.
To show that, let us start from simple physical considerations. Transforming to the
principal coordinates, x ′, of eαβ , the term −al2eαβ∇αθ̃∇β θ̃ becomes

−al2(c1∇1′ θ̃∇1′ θ̃ + c2∇2′ θ̃∇2′ θ̃ + c3∇3′ θ̃∇3′ θ̃). (3.18)

Because of incompressibility one has c1+c2+c3 = 0, and stretching in a given direction
is always accompanied by compression along, at least, one other direction. By virtue
of the fact that strong scalar gradients are expected to be aligned along the direction
of maximum compression (corresponding to negative ci), it then follows that, on
average, (3.18) is expected to be positive. This is the mechanism which leads to the
well-known ramp-and-cliff structure observed in passive scalar turbulence both for
Navier–Stokes velocity fields and for the Kraichnan ensemble (see, e.g., Celani et al.
2001).

The above arguments can be substantiated within the Kraichnan model. Indeed,
exploiting the Furutsu–Novikov functional Gaussian integration by parts, one obtains

−al2〈eαβ∇αθ̃∇β θ̃〉 = a
l2

6
〈(∇i ṽj )

2〉〈(∇θ̃ )2〉. (3.19)

However, it is clearly possible to observe, locally in space and time, positive values
of eαβ∇αθ̃∇β θ̃ , or, in other words, backscattering events responsible for negative
contributions to the scalar energy flux (see, e.g., Borue & Orszag 1998 for discussions
on backscattering events in hydrodynamics turbulence).

Focusing now on the unfiltered field, the balance equation has the well-known form

F (0) = 2κ0〈(∇θ )2〉. (3.20)

Equating the left-hand sides of (3.17) and (3.20), and recalling the inequality κ eff +
l2/60〈(∇i ṽj )

2〉 
 κ0, one concludes that the gradients of the large-scale scalar field are
smaller than the gradients of the unfiltered field. This is consistent with an effective
dissipative scale comparable to l and thus much larger than η by definition.
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To prove (3.16), let us start by rewriting (3.7) with 〈θ̃(x1)S̃(x2)〉 expressed in terms
of (3.8). Using (3.9) we obtain

∂tC
(θ̃ )
2 (r, t) + 2〈θ̃ (x1, t)ṽ · ∇θ̃ (x2, t)〉 − 2κ eff�C

(θ̃)
2 (r, t) − F (r) =

F (0)ξ 2

15

(
l

r

)2

(3.21)

where the contribution of order (l/r)ξ in (3.8) has been incorporated in the eddy-
diffusivity term. From (2.8) we immediately obtain the equation for C

(θ̃ )
2 :

∂tC
(θ̃ )
2 (r, t) + 2〈θ̃ (x1, t)ṽ · ∇θ̃ (x2, t)〉 − 2κ eff�C

(θ̃ )
2 (r, t) − F (r)

= −2al2〈θ̃ (x1)eαβ∇α∇β θ̃ (x2)〉 + O[(l/r)2+ξ ], (3.22)

with a = 1/5. We finally need to show that the right-hand side of (3.21) and the
right-hand side of (3.22) coincide up to order (l/r)2. In order to evaluate the
right-hand side of (3.22) we need to exploit again the Furutsu–Novikov functional
Gaussian integration by parts. One thus needs to compute the functional derivative
δθ̃(x, t)/δṽ(x ′′, t ′′) which can be easily obtained from (2.8). Accounting for the δ-
correlation in time and utilizing the expansions

D
(ṽ)
αβ (r) = D

(v)
αβ (r)

{
1 + O

[(
l

r

)ξ
]}

, S
(θ̃ )
2 (r) = S

(θ )
2 (r)

{
1 + O

[(
l

r

)2
]}

, (3.23)

one ends up exactly with the right-hand side of (3.21). Exploiting once more the
Furutsu–Novikov functional Gaussian integration by parts, it is not difficult (although
quite lengthy) to verify that the expression (3.4) for S

(θ̃)
2 is obtained from (2.8). The

remaining error is at the order (l/r)4.

4. Conclusions and perspectives
Summarizing, a systematic procedure to derive closed dynamical equations for a

coarse-grained passive scalar field in the statistical steady state has been obtained in
the framework of the Kraichnan advection model.

The question that naturally arises is whether those results are relevant to realistic
advection models. The answer is given by the outcome of the procedure itself. We
recover from first principles two well-known closures that are commonly used in
applications: the constant eddy-diffusivity parameterization of small scales, and the
passive scalar version of the nonlinear eddy-viscosity closure used in hydrodynamic
turbulence. Of course, the value of the effective diffusivity κ eff and of the numerical
parameter a that appear in these closures can be analytically computed only in
the Kraichnan model. However, we believe that the form of the parameterization
can be exported without modifications to real situations as well. Clearly, in this
case the free parameters (e.g. κ eff and a) have to be determined a posteriori by some
empirical procedure. The validity of this approach can be checked by direct numerical
simulations.

Let us conclude by mentioning a possible generalization of our work. Our analysis
has been carried for the second-order correlation function of the scalar field. There
are two reasons for this choice. First, the second-order correlation function is the
Fourier transform of the spectrum of scalar variance, a widely used statistical
indicator to characterize most of the statistical properties of scalar turbulence. Second,
for the Kraichnan model only the second-order correlation function has a simple,
closed analytical expression. For higher-order correlation functions only perturbative
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expressions (for example in the limit of small ξ ) are available (see Falkovich et al.
2001). However, should have we focused on a higher-order correlation function, how
would our results change? Although the analysis appears much more cumbersome
than the one presented here, the procedure described in § 3 can be completed as
well: it is still possible to obtain a closed equation for the coarse-grained correlation
function at any order in l/r , from which one can identify the corresponding dynamical
equations for the large-scale scalar field. The question is: will the latter dynamical
equation have the same structure of the coarse-grained scalar equation derived from
the second-order correlation? And if this is the case, will the coefficients be the
same? Even if the functional form of the closure is preserved, a modification of
the effective coefficients would mean that strong small-scale fluctuations – associated
with higher-order correlation functions – must be described by parameters different
from the ones used for less intense fluctuations. That would call into question the
applicability of closure models to the description of the statistics of turbulent fields
such as temperature or concentration, which are characterized by a wide range of
fluctuation intensities. This challenging issue is left for future research.
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discussions with Alessandra Lanotte.

Appendix. Proof of (3.9) and (3.10)
Let us write, from (3.8), 〈θ (x1)S(x2)〉 = A(l/r)ξ + B(l/r)2. By direct calculation

it is easily checked that, for any filter Gl (normalized and isotropic), the following
relations hold up to the second order in l/r:

〈θ̃ (x1)S(x2)〉 =

∫
d3sGl(s)〈θ (x1 + s)S(x2)〉

=

∫
d3sGl(s)

[
A

(
l

|r + s|

)ξ

+ B

(
l

|r + s|

)2
]

+ O

(
l

r

)ξ+2

= A

(
l

r

)ξ ∫
dss2Gl(s)

∫ 1

−1

d(cos ϑ)

∫ 2π

0

dϕ

[
1 − ξ cos ϑ

s

r
+ O

( s

r

)2
]

+ B

(
l

r

)2 ∫
dss2Gl(s)

∫ 1

−1

d(cosϑ)

∫ 2π

0

dϕ

[
1 − 2 cos ϑ

s

r
+ O

( s

r

)2
]

+ O

(
l

r

)ξ+2

= A

(
l

r

)ξ

+ B

(
l

r

)2

+ O

(
l

r

)ξ+2

= 〈θ (x1)S(x2)〉 + O

(
l

r

)ξ+2

.

Similarly, convolving also over x2, one finds

〈θ̃ (x1)S̃(x2)〉 = 〈θ̃ (x1)S(x2)〉 + O

(
l

r

)ξ+2

= 〈θ (x1)S(x2)〉 + O

(
l

r

)ξ+2

. (A 1)
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To prove (3.10), let us now consider (3.7) and the equation obtained from (3.6) with
the sole convolution over x1. Because of stationarity all time derivatives vanish and
for r in the inertial range the two-point terms proportional to molecular diffusivity
κ0 are negligible. We thus obtain

2〈θ̃ (x1)
˜ṽ · ∇θ̃ (x2)〉 = F (r) − 2〈θ̃ (x1)S̃(x2)〉 (A 2)

2〈θ̃ (x1)ṽ · ∇θ̃(x2)〉 = F (r) − 2〈θ̃ (x1)S(x2)〉. (A 3)

Subtracting (A 3) from (A 2), and using (3.9), we conclude that 〈θ̃L〉 = O[(l/r)ξ+2].
This proves (3.10).
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